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Abstract— The Reynolds’ transport theorem deals with 

the rate of change of an extensive property, N, of a fluid 

in a control volume. Its purpose is to provide a link 

between the concepts associated to the control 

volumesand those associated to systems. The Reynolds’ 

transport theorem is something extremely important in the 

formulation of the basic laws of fluid dynamics, which are 

the mass conservation equation, momentum conservation 

equationsand the energy conservation equation. This 

paper aims to propose an approach of the Reynolds’ 

Transport Theorem for finite control volume equations for 

mass, momentum and energy. 
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I. INTRODUCTION 

In general, the basic laws that the movement of fluids 

obey are enunciated and therefore lead to the motion 

equation.Often in the study of fluid flow it is preferred an 

approach from the control volume because it is easier and 

very relevant to study the movement of fluids. The 

question being asked is "How to connect the basic laws to 

a system with a control volume approach to fluids?". This 

issue has already been predicted by many. The result is 

the so-called Reynolds’ transport theorem, which relates 

derivatives of system properties to the control volume 

formulation. 

The equations for mass, energy and momentum are 

associatedto a system, and we now want to "convert" 

these equations into equivalent equations for control 

volume. For this, we will use the symbol N to represent 

any of the extensive properties of the system. We can 

imagine N as related to an amount of mass, linear motion, 

angular motion, or system energy. 

The corresponding intensive property (N/m) will be 

denoted by η.The relationship between the rate of change 

of an arbitrary extended property, N, of a system and the 

property variations within a control volume is given by 

the following equation (1), known as the Reynolds’ 

transport theorem 
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The physical interpretation of each of the terms can be 

found in several textbooks of fluid mechanics, some of 

them cited in the references (1,2,3) and it follows below: 
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 represents the rate of time change of the 

arbitrary extensive property, N, within the control volume 

η represents the intensive property corresponding to N 

(per unit mass) 

Vd represents a mass element contained in the control 

volume 

Vd
CV

 represents the total amount of the extensive 

property, N, contained within the control volume 
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 represents the total flow of the general 

property, N, through the control surface 
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 represents the mass of fluid flowing through the 

area element in the time unit 

AdV


 represents the rate of outflow of the extensive 

property, N, through the area 

At this point it is better to make Vd  the volume 

differential as not to be confused with the velocity V. 

 

II. MASS CONSERVATION 

The first physical principle to which we apply the 

relationship between system formulations and control 

volume is the mass conservation principle. 

The mass of a system remains constant. According to the 

considerations made in Eq. (1) and, bymaking N = M and 

η = 1, wehave: 

:
systemdt

dN
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For 0
dt

dm
 we have the mass conservation expressed by 
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as can be seen from references (1), (2) and (3). 

 

III. FLOW IN PERMANENT REGIME 

They are flows that do not vary with time, it cannot vary 

in a certain point, in a certain time, that is, their 

characteristics and their properties are permanent over 

time. Therefore 
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withthis comes 

 
Solving the integral in question we have 
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It can be concluded that the product of the density by the 

input area and the input speed is equal to the density times 

the output area and the output speed. Such a condition 

leaves the flow in equilibrium; that is, the input flow 

equals output flow. 

 

IV. INCOMPRESSIBLE FLOW 

In some cases, it is possible to simplify the previous 

equation, as in the case of an incompressible flow 

(specific mass ρ = constant, generally valid for liquids). 

When ρ does not depend either on space or time, the 

equation can be written as: 

0. SC
AdV


(6) 

In uniform flow it implies that the velocity is constant 

across the entire section area. If, in addition, ρ is also 

constant in the section, it results 

 

1122 AVAV   

 

EQUATION OF THE LINEAR MOMENTUM 

CONSERVATION FOR AN INERTIAL CONTROL 

VOLUME  

This analysis is restricted to an inertial control volume, 

that is, there is not acceleration relative to a steady 

reference system or inertial coordinate system. The 

following text can be verified by references (1), (2) and 

(3). Recalling Newton's second law for a system: 
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where P   represents the linear momentum of the system.The resulting force includes all field and surface forces 
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Considering the Reynolds’ transport theorem given by equation (1) 
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 and by making N = P   and  =V


, it follows that 
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As in the initial instant, the system and the CV  coincide, from equations (1), (2) and (4) we have: 
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For uniform and permanent flow: 
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This allows us to write that 

 
On the other hand, taking into account the continuity equation we have 

𝜌1𝐴1𝑉1 = 𝜌2𝐴2𝑉2 =  m
,
 

where
dt

dm
m   

The formulation for CV  of the Newton’s second law is given by 

𝐹 = m (𝑉2 − 𝑉1)(10) 

 

ENERGY EQUATION FOR AN INERTIAL CONTROL VOLUME 

Again, starting from equation (1) and references (1), (2) and (3) we have 
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By making  = e  and EN  , it comes that 
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On the other hand, it is known that 
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We know that, for a permanent flow: 
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Finally, for a non-deformable control volume, it may be written 
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where 
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V. RELATIONSHIP BETWEEN THE ENERGY EQUATION AND THE BERNOULLI’S EQUATION 

Starting from the energy equation and the references (1), (2) and (3), it may be written 

AdV
p

eVde
t

WQ
dt

dE

SCCV
system


 .)( 














      (16)

 

By supposing thatW = 0and by considering the permanent regime  
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We have that 
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By developing the integral on the SC control surface, we have 
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More specifically, by solving the integral the equation becomes 
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Taking into account the mass conservation equation 
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This equation can also be written 
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For reversible adiabatic processes, it implies the nullity of the following term: 
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In view of this, one arrives at Bernoulli's equation 
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VI. FINAL CONSIDERATIONS 

The derivation of the Reynolds’ transport theorem (Rtt) 

may seem very complex, but when the basis of the 

theorem is understood, it is indeed easy to follow its 

derivation. Weshould start with a system andthe rate 

atwhichanextendedproperty N changes in it. 

In most contemporary textbooks these equations are 

derived by transforming the corresponding equations into 

a control mass using the Reynolds’ transport theorem. 

This theorem is mathematically correct, and mastering its 

derivation is a good mathematical exercise, but Rtt is a 

difficult medium for this purpose, since learning and 

mastering Rtt is not an end in itself, particularly in an 

introductory course.In addition, it is comforting to have 

evidence that the laws governing the control masses can 

be translated into the laws governing the contents of the 

control volumes. 
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